Table 5. Torsion angles $\left(^{\circ}\right.$)

$\mathrm{C}(14)-\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(12)$	$-17.9(5)$
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$37.7(5)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(3)-\mathrm{C}(14)$	$-41.2(4)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(1)$	$31.9(5)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(1)-\mathrm{C}(11)$	$-9.1(5)$
$\mathrm{O}(1)-\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$24.1(7)$
$\mathrm{O}(2)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{O}(1)$	$-81.7(4)$
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{O}(1)$	$159.8(3)$
$\mathrm{O}(3)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$	$-159.4(4)$
$\mathrm{O}(2)-\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(11)$	$75.1(3)$

plane so that the sugar pucker is $\mathrm{C}(12)$-endo, $\mathrm{C}(13)$ exo. From the torsion angles in Table 5 it can be deduced that the furanose ring is in the ${ }_{3}^{2} T$ conformation.

The anomeric configuration can be defined by the atoms bonded to the furanose ring. In the β anomer $\mathrm{C}(10)$ is on the opposite side of the mean plane to $\mathrm{O}(2)$ and $\mathrm{O}(3)$, and these three atoms have deviations of $0.66,-1.65$ and $-0.32 \AA$ respectively, while the a anomer has $C(10), O(2)$ and $O(3)$ on the same side of the least-squares plane.

Fig. 2 shows the arrangement of the molecules in the unit cell as viewed along [010]. The molecules are linked by hydrogen bonds and van der Waals forces. Each molecule is involved in two strong hydrogen bonds, $\mathrm{O}(1) \cdots \mathrm{H}-\mathrm{O}(2)$ of $2.70 \AA$ and $\mathrm{N}(2)-$ $\mathrm{H} \cdots \mathrm{O}(2)$ of $2.76 \AA$. Both contacts are between molecules related by twofold screw axes and translated, for the first, along the $b c$ diagonal, and, for the second, along the b axis. There is a short $S \cdots C(14)$ distance of $3.55 \AA$ between molecules translated along the $b c$ diagonal that may indicate some van der Waals
interaction. The effect is to produce a three-dimensional network of molecules.

The authors thank Dr F. Cano (Instituto de FísicaQuimica G. Rocasolano, CSIC, Madrid, Spain) for his assistance in the measurement of the intensities on a Philips single-crystal diffractometer, Professor J. Fernández Bolaños for his discussion on the chemical aspects and Professor A. Conde and Dr R. JiménezGaray for many helpful discussions.

The present work is part of a wider research project supported by the Government through the 'Comision Asesora de Investigación Científica y Técnica'. This paper forms part of the doctoral thesis of one of us (IB).

References

Barragán, I., López-Castro, A. \& Márquez, R. (1977). Acta Cryst. B33, 2244-2249.
Berman, H. M., Chu, S. S. C. \& Jeffrey, G. A. (1967). Science, 157, 1576-1577.
Conde, A., Moreno, E. \& Márquez, R. (1975). Acta Cryst. B31, 648-652.
Cromer, D. T. \& Mann, J. B. (1968). Acta Cryst. A24, 321-324.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A 27, 368-376.
Hoge, R. \& Nordman, C. E. (1974). Acta Cryst. B30, 1435-1440.
International Tables for X-ray Crystallography' (1962). Vol. III. Birmingham: Kynoch Press.

Sundaralingam, M. (1973). Conformation of Biological Molecules and Polymers, Jerusalem Symp. Quantum Chem. Biochem. 5, 417-456.
Wilson, A. J. C. (1942). Nature (London), 150, 151-152.

1,9-Diacetoxy-5-chloro-12,12-dimethyltricyclo[6.2.2.0 ${ }^{2,7}$]dodeca-4,9-diene-3,6-dione

By Luigi R. Nassimbeni* and Graham E. Jackson
Department of Physical Chemistry, University of Cape Town, South Africa
and Robin G. F. Giles and Gregory H. P. Roos
Department of Organic Chemistry, University of Cape Town, South Africa

(Received 23 July 1977; accepted 14 August 1977)

Abstract

C}_{18} \mathrm{H}_{19} \mathrm{O}_{6} \mathrm{Cl}\), triclinic, $P \overline{1}, a=13 \cdot 280$ (6), $b=$ $8.638(5), c=8.164$ (5) $\AA, \quad \alpha=107.6(2), \quad \beta=$ $82.4(2), \quad \gamma=97.7(2)^{\circ}, \quad V=880.7 \AA^{3}, \quad M_{r}=366 \cdot 5$, $D_{m}=1.36, D_{c}=1.38 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=2$. The structure

^[* Author to whom correspondence should be addressed.]

was solved by direct methods to a final R of 0.073 for 1724 unique X-ray diffractometer data. There are no unusual bond lengths.

Introduction. 1-Methoxycyclohexa-1,3-diene has been shown to undergo regiospecific Diels-Alder addition to

2-chloro-1,4-benzoquinone, while the related 1,3-dimethoxycyclohexa-1,3-diene behaves quite differently with this dienophile (Giles \& Roos, 1976). The reaction between 1,3-diacetoxycyclohexa-1,3-diene, generated in situ (Wolinsky \& Login, 1970), and 2-chloro-1,4benzoquinone has now been investigated. It has been found that both possible regioisomers are formed in this reaction, in the ratio of $2: 1$ as indicated by ${ }^{1} \mathrm{H}$ NMR spectroscopy. This reaction is, therefore, not of great synthetic importance. However, the major isomer, m.p. $183^{\circ} \mathrm{C}$, has been purified chromatographically, and this crystallographic study was undertaken to determine whether Cl bonds to $\mathrm{C}(4)$ or $\mathrm{C}(5)$.

Fig. 1. Perspective view of the molecule with atomic nomenclature.
Table 1. Fractional atomic coordinates of the nonhydrogen atoms ($\times 10^{4}$)

	x	y	z
Cl	2414 (1)	7531 (2)	6651 (2)
C(5)	2918 (4)	6262 (6)	7527 (8)
C(6)	2472 (4)	6248 (7)	9274 (8)
C(7)	2727 (4)	4919 (6)	9973 (7)
C(2)	3707 (4)	4081 (6)	9110 (7)
C(3)	4238 (5)	4575 (6)	7554 (7)
C(4)	3723 (4)	5494 (7)	6740 (7)
C(8)	1799 (4)	3611 (6)	9934 (7)
C(9)	1756 (4)	2531 (7)	8105 (8)
$\mathrm{C}(10)$	2582 (4)	1787 (6)	7392 (7)
C(1)	3407 (4)	2206 (6)	8589 (7)
C(11)	2993 (4)	1721 (6)	10234 (7)
C(12)	1978 (4)	2496 (6)	11029 (7)
C(13)	2055 (5)	3474 (7)	12919 (7)
C(14)	1071 (4)	1158 (7)	10931 (9)
C(15)	5130 (4)	1380 (7)	8307 (9)
$\mathrm{C}(16)$	5858 (5)	364 (8)	6981 (8)
C(17)	373 (5)	3187 (10)	6954 (9)
C(18)	-545 (4)	2441 (8)	6011 (8)
O(6)	1932 (4)	7269 (5)	10140 (6)
$\mathrm{O}(3)$	5107 (3)	4245 (5)	7022 (5)
$\mathrm{O}(1)$	4233 (3)	1266 (4)	7619 (4)
$\mathrm{O}(15)$	4695 (3)	7829 (5)	10266 (5)
O(9)	853 (3)	2065 (5)	7244 (5)
O(17)	676 (4)	4601 (6)	7383 (7)

Preliminary oscillation and Weissenberg photographs, taken about the three principal axes, indicated that the space group was either P1 or Pī. The latter was chosen from analysis of E statistics, the choice being vindicated by the successful refinement of the structure. The crystal used for data collection had dimensions $0.35 \times 0.1 \times 0.1 \mathrm{~mm}$ and the cell parameters were obtained from least-squares analysis of the settings of 25 reflections measured on a fourcircle Philips PW 1100 diffractometer. Intensities were

Table 2. Fractional atomic coordinates of the hydrogen atoms ($\times 10^{3}$)

	x	y	z
	(7)	290	556
$\mathrm{H}(7)$	1128		
$\mathrm{H}(2)$	426	448	1006
$\mathrm{H}(4)$	400	554	545
$\mathrm{H}(9)$	111	421	1042
$\mathrm{H}(10)$	265	97	609
$\mathrm{H}(111)$	285	41	992
$\mathrm{H}(112)$	355	215	1117
$\mathrm{H}(131)$	270	438	1295
$\mathrm{H}(132)$	216	273	1372
$\mathrm{H}(133)$	137	407	1339
$\mathrm{H}(141)$	94	41	964
$\mathrm{H}(142)$	42	182	1150
$\mathrm{H}(143)$	119	39	1170
$\mathrm{H}(161)$	657	41	749
$\mathrm{H}(162)$	599	86	590
$\mathrm{H}(163)$	553	-88	656
$\mathrm{H}(181)$	-83	344	574
$\mathrm{H}(182)$	-112	192	681
$\mathrm{H}(183)$	-36	152	481

measured with graphite-monochromated Mo Kor radiation ($\lambda=0.7017 \AA$), and the $\omega-2 \theta$ scan mode [scan width $1.2^{\circ}(\theta)$, scan speed $0.04^{\circ}(\theta) \mathrm{s}^{-1}$]. 2162 reflections were collected in the 2θ range 6° to 44° and, using the criterion $I_{\text {rel }}>2 \sigma\left(I_{\text {rel }}\right), 1724$ reflections were considered 'observed'. A Lorentz-polarization correction was applied; no correction was made for absorption.
The structure was solved by the automatic centrosymmetric routine of the SHELX program system (Sheldrick, 1976), in which an E map yielded 22 of the 25 heavy atoms, and subsequent least-squares refinement, followed by a difference map, showed the remaining heavy atoms. The final refinement was carried out with the heavy atoms treated anisotropically, the methyl H atoms refined as rigid groups and the remaining H atoms constrained at $1.08 \AA$ from their respective C atoms, their positions being dictated by the geometry of the molecule. The isotropic temperature factors of the H atoms, treated as three single parameters, refined to $U=0.072 \AA^{2}$ (aromatic H), $U=0.053 \AA^{2}$ (methine, methylene H) and $U=$ $0.137 \AA^{2}$ (methyl H). The refinement converged to $R=$ 0.073 and $R_{w}=\Sigma w^{1 / 2}\left|F_{o}-F_{c}\right| / \Sigma w^{1 / 2}\left|F_{o}\right|=0.062$ with $w=1 / \sigma^{2}$. ${ }^{*}$

[^1]Discussion. The analysis shows that the major isomer, m.p. $183^{\circ} \mathrm{C}$, formed in the Diels-Alder reaction is the title compound. Tables 1 and 2 show the final coordinates. Fig. 1 shows a perspective view of the molecule with the atomic nomenclature. Principal bond lengths and angles are listed in Tables 3 and 4. All bond lengths are in good agreement with accepted values (Kennard, 1962) and there are no intermolecular close contacts less than $3.5 \AA$.

All calculations were carried out on a Univac 1106 computer at the University of Cape Town.

We thank the Council for Scientific and Industrial Research (Pretoria) for the diffractometer data collection and the Council for Scientific and Industrial Research and the University of Cape Town for research grants.

References

Giles, R. G. F. \& Roos, G. H. P. (1976). J. Chem. Soc. Perkin Trans. 1, pp. 2057-2060.
Kennard, O. (1962). International Tables for X-ray Crystallography, Vol. III, pp. 275-276. Birmingham: Kynoch Press.
Sheldrick, G. M. (1976). Private communication.
Wolinsky, J. \& Login, R. B. (1970). J. Org. Chem. 35, 1987-1989.

The Monoadduct between [4.4.3]Propella-2,4-diene and 4-Phenyl-1,2,4-triazoline-3,5-dione*

By M. Kaftory
Department of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel

(Received 18 July 1977; accepted 16 August 1977)

Abstract

C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{2}\), monoclinic, $P 2_{1} / c, a=14.142$ (2), $b=7.228$ (1), $c=18.014$ (3) $\AA, \beta=108.27$ (1) ${ }^{\circ}$, $M_{r}=349.43, Z=4, D_{x}=1.328 \mathrm{~g} \mathrm{~cm}^{-3}$. The two six-membered rings are in the boat form, both folded towards the central five-membered ring. The $1,2,4-$ triazoline-3,5-dione ring is anti with respect to the latter. The bonding around the two vicinal atoms $\mathrm{N}(1)$ and $\mathrm{N}(3)$ is pyramidal, while around the third, $\mathrm{N}(2)$, it is planar. The cyclopentane ring has an envelope shape

[^2]with $\mathrm{C}(12)$ flapping towards the unsubstituted sixmembered ring.

Introduction. The crystal structure of the title compound is of interest in connexion with stereochemical studies of Diels-Alder adducts of [4.4 X]propella-2,4dienes ($X \equiv$ substituted rings) (Korat, Tatarsky \& Ginsburg, 1972; Kalo, Vogel \& Ginsburg, 1977).
Intensities from a colourless crystal, $0.4 \times 0.2 \times 0.2$ mm , were collected on a semi-automatic StoeWeissenberg diffractometer with graphite-mono-

[^1]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32929 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI INZ, England.

[^2]: * Configuration of Diels-Alder Adducts. I.

